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Abstract
The transient properties of a tumor cell growth model with immune surveillance
driven by cross-correlated multiplicative and additive noises are investigated.
The explicit expression of extinction rate from the state of a stable tumor to the
state of extinction is obtained. Based on the numerical computations, we find
the following: (i) the intensity of multiplicative noise D and the intensity of
additive noise α enhance the extinction rate for the case of λ � 0 (i.e. λ denotes
cross-correlation intensity between two noises), but for the case of λ > 0, a
critical noise intensity D or α exists at which the extinction rate is the smallest;
D and α at first weaken the extinction rate and then enhance it. (ii) The immune
rate β and the cross-correlation intensity λ play opposite roles on the extinction
rate, i.e. β enhances the extinction rate of the tumor cell, while λ weakens the
extinction rate of the tumor cell. Namely, the immune rate can enhance the
extinction of the tumor cell and the cross-correlation between two noises can
enhance stability of the cancer state.

PACS numbers: 05.40.−a, 02.50.−r

1. Introduction

In recent years, the law of tumor cell growth has been investigated extensively both in the
area of theory or the one of experiment in a large variety of physical, chemical, biological
systems [1, 2]. There are several models for describing tumor growth, such as the screened
Eden model [3], Gompertzian growth model [4], self-limiting growth model [5], feedback
model [6] and predator–prey model [7–11], etc. Scientists have tried to find exact measures
to control tumors and cure cancers, and showed that there is an interesting and significant
case for immunotherapy in tumor treatments [12–14]. The cell-mediated immune surveillance
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against cancer is also one of the effects which may be described in terms of a ‘predator–prey’
system; the population of tumor cells here plays the role of ‘preys’ whereas the immune cells
are regarded as ‘predators’. The activity of the predator in a certain territory, or the activity
of immune cells in tissue, resembles the mode of action of enzymes or catalysts in a chemical
reaction, where the enzymes transform substrates in a continuous manner without destroying
themselves. The constant immune cell population is assumed to act in a similar way, binding
the tumor cells and subsequently releasing them so that they are unable to replicate [15].

More recently, the model of the tumor cell growth with immune response has attracted
a lot of attention in the biological system [15, 16]. For example, the simplest model which
describes phase transition in the tumor cell growth model with immune surveillance is given
by a Langevin equation with additive noise [17, 18]. Then, Zhong et al investigated pure
multiplicative stochastic resonance and non-equilibrium phase transition in this system with
multiplicative Gaussian white noise [19, 20]. The works mentioned above are only concerned
with a single noise case, but the system is always disturbed by random fluctuations of the
external environment (e.g. host tissue pressure, immune response, etc) and the intrinsic thermal
fluctuations simultaneously, and in certain situations the two fluctuations may have a common
origin and thus may be correlated with each other as well [21]. The effects of cross-correlation
between two noises on the transient properties of the nonlinear system have been applied to
many fields, such as a bistable system [22, 23], laser system [24], biological system [25] and
so on. However, the effects of cross-correlation between two noises on the transient properties
of the tumor cell growth model with immune surveillance driven by cross-correlated noises
have not yet been discussed. Therefore, in order to understand further the dynamics properties
of the tumor cell growth model with immune surveillance driven by cross-correlated noises,
the extinction rate of the system from the state of a stable tumor to the state of extinction needs
to be investigated.

This paper is arranged as follows: in section 2, using the steepest descent method, the
explicit expression of the extinction rate from the state of a stable tumor to the state of
extinction is derived. The effects of the multiplicative noise intensity D, the additive noise
intensity α, the immune rate β and the cross-correlation intensity λ on the extinction rate have
been discussed. Finally, discussions and conclusions end the paper.

2. The extinction rate for the tumor cell growth model with immune surveillance

We consider the growth of the tumor under immune surveillance against cancer using the
logistic growth model [26]. The model is

dx

dt
= x(1 − θx) − β

x

x + 1
, (1)

where x is the population of the tumor cells, β is the immune rate and θ is the constant
parameter. If we consider the environmental fluctuations (e.g. temperature, pH, ionic strength,
drugs, etc), these can influence the tumor mass directly as well as alter the tumor immune
rate. In other words, the fluctuation of these factors affects the immune rate β generating
multiplicative noise. At the same time, some factors, such as drugs and radiotherapy, restrain
the number of tumor cells, give rise to an additive noise. As a result, we obtain

dx

dt
= x(1 − θx) − β

x

x + 1
− x

x + 1
ξ(t) + η(t), (2)

where ξ(t) and η(t) are Gaussian white noises and their statistical properties are given by

〈ξ(t)〉 = 0, 〈ξ(t)ξ(t ′)〉 = 2Dδ(t − t ′),
〈η(t)〉 = 0, 〈η(t)η(t ′)〉 = 2αδ(t − t ′),

(3)
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in which D is the intensity of the multiplicative noise and α is the intensity of the additive noise.
In [15, 16], ξ(t) in equation (2) is a dichotomous colored noise, but here ξ(t) is Gaussian white
noise and there is a cross-correlation between ξ(t) and η(t). The correlation form between
the two noises is assumed to be as follows:

〈ξ(t)η(t ′)〉 = 〈η(t)ξ(t ′)〉 = 2λ
√

Dαδ(t − t ′), (4)

where λ denotes the intensity of cross-correlation between ξ(t) and η(t). The deterministic
potential corresponding to equation (2) is

V (x) = −x2

2
+

θx3

3
+ βx − β ln (x + 1), (5)

which has two steady stable states x1 = 0, x2 = (1 − θ +
√

(1 + θ)2 − 4βθ)/2θ , and one
unstable steady state xu = (1 − θ −

√
(1 + θ)2 − 4βθ)/2θ .

Considering the stochastic process in the steady-state regime, the approximate Fokker–
Planck equation corresponding to equations (2) and (3) is derived by using the Novikov
theorem [27, 28] and Fox approach [29], which is as follows [30, 31]:

∂P (x, t)

∂t
= − ∂

∂x
A(x)P (x, t) +

∂2

∂x2
B(x)P (x, t), (6)

where

A(x) = x(1 − θx) − β
x

x + 1
+

Dx

(x + 1)3
− λ

√
Dα

(x + 1)2
,

B(x) = D
( x

x + 1

)2
− 2λ

√
Dα

x

x + 1
+ α.

(7)

From equations (6) and (7), the stationary probability distribution function Pst(x) can be
derived as

Pst(x) = N

B1/2(x)
exp

[
−U(x)

D

]
, (8)

where U(x) is the generalized potential, given by

U(x) = −
∫ x x(1 − θx) − β x

x+1(
x

x+1

)2 − 2λ
√

R x
x+1 + R

dx

= θ

3m
x3 +

1

2m

(
2θ − 1 − n

m
θ
)

x2 − γ1

m
x +

1

2m

(
γ2 − n

m
γ1

)
ln

∣∣∣∣x2 +
n

m
x +

R

m

∣∣∣∣
− 2γ3√

4mR − n2
arctan

2mx + n√
4mR − n2

, (9)

in which

R = α/D, m = 1 − 2λ
√

R + R, n = 2(R − λ
√

R),

γ1 = β − 2 + θ − R

m
θ −

(
2θ − 1 − n

m
θ
) n

m
,

γ2 = β − 1 −
(

2θ − 1 − n

m
θ
) R

m
,

γ3 = Rγ1

m
+

n

2m

(
γ2 − n

m
γ1

)
.

(10)

Using the steepest descent method [32–34], the explicit expression for the mean extinction
time of the process x(t) to reach the the state of extinction x1 with the initial condition
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Figure 1. Curves of escape rate ν versus multiplicative noise strength D for different values of λ

with α = 0.1, θ = 0.1 and β = 2.26. λ takes respectively −0.9, 0, 0.5, 0.8 and 0.9 from top to
bottom.

x(t = 0) = x2 (the state of a stable tumor) is given by the Kramers-like formula

T = 2π√|V ′′(xu)V ′′(x2)|
exp

[
U(xu) − U(x2)

D

]
. (11)

Note that the above result is valid only when the intensity of two types of noises, measured
by D and α, is small in comparison with the energy barrier height �U = |U(xu) − U(x2)|
[25, 35]. It provides restriction on the parameters (such as θ, β,D, α and λ). The following
results in this study are restricted in valid regions. Then, we obtain the extinction rate from
the state of a stable tumor to the state of extinction as the following formula [36]:

ν = T −1 =
√|V ′′(xu)V ′′(x2)|

2π
exp

[
U(x2) − U(xu)

D

]
, (12)

where V ′′ is the second derivative of V with respect to x.

3. Discussions and conclusions

Equation (2) represents a physical model of a tumor cell growth system with immune
surveillance driven by cross-correlated multiplicative and additive noises corresponding to
the deterministic potential V (x) (equation (5)); V (x) has two steady states x1 and x2, which
represent the state of extinction, where no tumor cells are present, and the state of stable
tumor, where its density does not increase but stay at a certain constant level. Environmental
fluctuations present in the system can induce transitions between those two states. From this
point of view, it is interesting to study the extinction rate from the state of a stable tumor
to the state of extinction. We want to find out how the extinction rate can be changed by
varying the noise parameters, such as the noise intensity or the immune rate. The extinction
rate distribution curves of the tumor cell growth system are plotted in figures 1–4.

Figures 1 and 2 show the extinction rate as a function of the multiplicative noise intensity
D and as a function of the additive noise intensity α for different values of the cross-correlation
intensity λ of noises, respectively. From the physics point of view, one can see that for fixed
θ , β, α and D, the generalized force

F = −dU(x)

dx
= x(1 − θx) − β x

x+1(
x

x+1

)2 − 2λ
√

α/D x
x+1 + α/D

(13)

increases within the interval 0 � x1 < x2, when increasing the value of λ. Also, the height
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Figure 2. Curves of escape rate ν versus additive noise strength α for different values of λ with
D = 0.1, θ = 0.1 and β = 2.26. λ takes respectively −0.9, 0, 0.5, 0.8 and 0.9 from top to bottom.
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Figure 3. Curves of escape rate ν versus multiplicative noise strength D for different values of β

with α = 0.1, λ = 0.5 and θ = 0.1. β takes respectively 2.56, 2.46, 2.36 and 2.26 from top to
bottom.
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Figure 4. Curves of escape rate ν versus additive noise strength α for different values of λ with
D = 0.1, λ = 0.5 and θ = 0.1. β takes respectively 2.56, 2.46, 2.36 and 2.26 from top to bottom.

of the barrier for the transition from x2 to x1 increases. Thus, this causes an increase in
the mean extinction time and consequently the extinction rate decreases with increasing λ,
as shown in figures 1 and 2. In consideration of the denominator of the expression (13),

5



J. Phys. A: Math. Theor. 42 (2009) 495002 C Zeng et al

0
0.1

0.2
0.3

0

5

10

−20

0

20

αx

(a) λ=0.9

U
(x

)

0
0.1

0.2
0.3

0

5

10

−3

−2

−1

0

αx

(b) λ=0.0

U
(x

)

0
0.1

0.2
0.3

0

5

10
−5

−4

−3

−2

−1

0

αx

(c) λ=−0.9

U
(x

)

Figure 5. Three-dimensional curve of the generalized potential U(x) versus x and α with
D = 0.1, θ = 0.1 and β = 2.26. (a) λ = 0.9; (b) λ = 0.0; (c) λ = −0.9.

(x/(x + 1) − λ
√

α/D)2 + α(1 − λ2)/D has a minimum at xc = λ
√

α/D

1−λ
√

α/D
for the case of

λ > 0. It is obvious that the generalized force exhibits one maximum value within the interval
0 � x1 < x2 for the case of λ > 0. Also, the height of the barrier for the transition from x2 to x1

exhibits one maximum value. Hence, this causes one maximum value for the mean extinction
time and consequently the extinction rate exhibits one minimum value (see λ = 0.5, λ = 0.8
and λ = 0.9 in figures 1 and 2). However, for the cases of λ � 0, xc = λ

√
α/D

1−λ
√

α/D
� 0, since
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Figure 6. Three-dimensional curve of the generalized potential U(x) versus x and β with
α = 0.1, λ = 0.5, θ = 0.1 and D = 0.1.

x cannot be negative, the denominator of expression (13) monotonously increases, and the
generalized force monotonously decreases. Also, the height of the barrier for the transition
from x2 to x1 decreases. This in turn causes a decrease for the mean extinction time and
consequently the extinction rate increases (see λ = −0.9, and λ = 0.0 in figures 1 and 2).
Our results showed that D and α can weaken the extinction rate of the system firstly and then
enhance it for the case of λ > 0; a critical noise intensity D or α exists at which the extinction
rate induced by noises is the smallest. However, for the case of λ � 0, D and α enhance the
extinction rate.

For fixed θ , α, D and λ (i.e. see figures 3 and 4), the extinction rate is increased with the
increasing immune rate β. From the aspect of physics, it is obvious that the generalized force
decreases within the interval 0 � x1 < x2 with increasing β (see equation (13)). Hence, the
height of the barrier decreases within the interval 0 � x1 < x2 with increasing β. This in turn
causes the extinction of the tumor cell with the increasing immune rate β.

In order to provide some insight into the above-mentioned phenomenon, we plot the three-
dimensional curves of the generalized potential U(x) versus x and α (or β) in figures 5(a–c)
and 6. The behavior of the three-dimensional curves of U(x) versus x and D is similar to that
of U(x) versus x and α. For brevity, the three-dimensional curves of U(x) versus x and D
are not presented in this paper. Obviously, the generalized potential has two stable states, and
their minimum is obtained from A(x) − B ′(x) = 0. The positions of the potential minimum,
x1 and x2, shown in figures 5(a–c) and 6, are regarded as the state of extinction and the state
of stable tumor, respectively. The generalized potential is an asymmetrical bistable potential
well and its values at x1 and x2 change with the noise intensity α or the immune rate β, and then
we can define the difference between the potential well at x1 and that at x2 as |U(x1)−U(x2)|.
The larger the difference between the potential well, the smaller the transition from x2 to x1,
and vice versa. When the cross-correlation intensity λ > 0 (see λ = 0.9 in figure 5(a)), as the
intensity of noise α increases, the difference between the potential well increases firstly and
then decreases. However, for the case of λ � 0 (see λ = 0.0 and −0.9 in figures 5(b), (c)),
the difference between the potential well decreases as α increases. When the cross-correlation
intensity λ is fixed (see figure 6), as the immune rate β increases, the difference between the
potential well decreases.

In conclusion, the intensity of noises D and α enhance the extinction rate for the case of
λ � 0; however, for the case of λ > 0, D and α weaken the extinction rate firstly and then
enhance it. The immune rate β and the cross-correlation intensity λ play opposite roles on the

7



J. Phys. A: Math. Theor. 42 (2009) 495002 C Zeng et al

extinction rate, i.e β enhances the extinction of the tumor cell, while λ weakens the extinction
rate of the tumor cell; in other words, cross-correlation between two noises can enhance the
stability of the cancer state.
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